

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 `{include} ../../CHANGELOG.md
`

 `{include} ../../CONTRIBUTING.md
`

Contributors

[gh]: https://cdnjs.cloudflare.com/ajax/libs/octicons/8.5.0/svg/mark-github.svg
[orc]: ../_static/orcid.svg

atomate2 was designed and developed by Alex Ganose [![gh]][utf] [![orc]][0000-0002-4486-3321].

[utf]: https://github.com/utf
[0000-0002-4486-3321]: https://orcid.org/0000-0002-4486-3321

Additional contributions have been provided by:

Andrew Rosen [![gh]][arosen93] [![orc]][0000-0002-0141-7006] Miller Research Fellow University of California, Berkeley

[arosen93]: https://github.com/arosen93
[0000-0002-0141-7006]: https://orcid.org/0000-0002-0141-7006

Jimmy-Xuan Shen [![gh]][jmmshn] [![orc]][0000-0002-2743-7531] Postdoctoral Researcher Lawrence Livermore National Laboratory

[jmmshn]: https://github.com/jmmshn
[0000-0002-2743-7531]: https://orcid.org/0000-0002-2743-7531

Janosh Riebesell [![gh]][janosh] [![orc]][0000-0001-5233-3462]PhD Student Cambridge University

[janosh]: https://github.com/janosh
[0000-0001-5233-3462]: https://orcid.org/0000-0001-5233-3462

Ryan Kingsbury [![gh]][rkingsbury] [![orc]][0000-0002-7168-3967] Incoming Assistant Professor Princeton University

[rkingsbury]: https://github.com/rkingsbury
[0000-0002-7168-3967]: https://orcid.org/0000-0002-7168-3967

Janine George [![gh]][JaGeo] [![orc]][0000-0001-8907-0336] Junior Group Leader Federal Institute for Materials Research and Testing (Berlin) Friedrich Schiller University Jena

[JaGeo]: https://github.com/JaGeo
[0000-0001-8907-0336]: https://orcid.org/0000-0001-8907-0336

Mingjian Wen [![gh]][mjwen] [![orc]][0000-0003-0013-575X] Assistant Professor University of Houston

[mjwen]: https://github.com/mjwen
[0000-0003-0013-575X]: https://orcid.org0000-0003-0013-575X/

Christina Ertural [![gh]][QuantumChemist] [![orc]][0000-0002-7696-5824] Postdoctoral Researcher Federal Institute for Materials Research and Testing (Berlin)

[QuantumChemist]: https://github.com/QuantumChemist
[0000-0002-7696-5824]: https://orcid.org/0000-0002-7696-5824

Matthew Horton [![gh]][mkhorton] [![orc]][0000-0001-7777-8871] Senior Research Software Engineer Microsoft Research

[mkhorton]: https://github.com/mkhorton
[0000-0001-7777-8871]: https://orcid.org/0000-0001-7777-8871

Zhuoying Zhu [![gh]][zhuoying] [![orc]][0000-0003-1775-7651] Postdoctoral researcherLawrence Berkeley National Laboratory

[zhuoying]: https://github.com/zhuoying
[0000-0003-1775-7651]: https://orcid.org/0000-0003-1775-7651

Aakash Ashok Naik [![gh]][naik-aakash] [![orc]][0000-0002-6071-6786] PhD studentFederal Institute for Materials Research and Testing (Berlin) Friedrich Schiller University Jena

[naik-aakash]: https://github.com/naik-aakash
[0000-0002-6071-6786]: https://orcid.org/0000-0002-6071-6786

License

atomate2 is developed under a modified BSD license, reproduced below:

```
atomate2 Copyright (c) 2021, The Regents of the University of
California, through Lawrence Berkeley National Laboratory (subject
to receipt of any required approvals from the U.S. Dept. of Energy).
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

(1) Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with
the distribution.

(3) Neither the name of the University of California, Lawrence
Berkeley National Laboratory, U.S. Dept. of Energy nor the names of
its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes,
patches, or upgrades to the features, functionality or performance
of the source code (“Enhancements”) to anyone; however, if you
choose to make your Enhancements available either publicly, or
directly to Lawrence Berkeley National Laboratory or its
contributors, without imposing a separate written license agreement
for such Enhancements, then you hereby grant the following license:
a  non-exclusive, royalty-free perpetual license to install, use,
modify, prepare derivative works, incorporate into other computer
software, distribute, and sublicense such enhancements or derivative
works thereof, in binary and source code form.
```


 # Developer Installation

You can install atomate2 with pip or from source.

Install using pip

You can install the basic functionality of atomate2 using pip:

`bash
pip install atomate2
`

If you are planning to use atomate2 with fireworks, you can install the optional
fireworks components:

`bash
pip install atomate2[fireworks]
`

We also maintain other dependency sets for different subsets of functionality:

`bash
pip install atomate2[amset] # Install requirements for running AMSET calculations
`

Install from source

To install atomate2 from source, clone the repository from [github](https://github.com/materialsproject/atomate2)

`bash
git clone https://github.com/materialsproject/atomate2
cd atomate2
pip install .
`

You can also install fireworks dependencies:

`bash
pip install .[fireworks]
`

Or do a developer install by using the -e flag:

`bash
pip install -e .
`

Installing pre-commit

If you’re planning on contributing to the atomate2 source, you should also install
the developer requirements with:

`bash
pip install -e .[dev]
pre-commit install
`

The pre-commit command will ensure that changes to the source code match the
atomate2 style guidelines by running code linters such as black, ruff,
and mypy automatically with each commit.

Running unit tests

Unit tests can be run from the source folder using pytest. First, the requirements
to run tests must be installed:

`bash
pip install .[tests]
`

And the tests run using:

`bash
pytest
`

Building the documentation

The atomate2 documentation can be built using the sphinx package. First, install the requirements:

`bash
pip install .[docs]
`

Next, the docs can be built to the docs_build directory:

`bash
jupyter-book build docs --path-output docs_build
`

 # Writing VASP Tests

Considerations

Atomate2 includes tools to help write tests for VASP workflows. The primary
considerations with the atomate2 testing environment are listed below.

Pseudopotentials

We cannot include any POTCAR files with atomate2 as they are copyrighted material.

To overcome this, the reference test data includes POTCAR.spec files that only
contain the pseudopotential name and not the data.

File sizes

The files produced by VASP are generally large and would overwhelm the size of the
atomate2 repository if not managed carefully. For example, CHGCAR files can easily be
ten’s of megabytes which can quickly add up.

To overcome this, we only include essential VASP output files in the atomate2 test
folder. For example, CHGCAR, LOCPOT, and other density information is not needed in most
instances. One exception is non-self-consistent band structures where the charge density
must be copied from a static calculation. Any other example is in the amset workflow,
where the WAVECAR is needed to extract the wavefunction coefficients.

VASP execution

We cannot run VASP on the testing server due to the computational expense. Furthermore,
different versions/compilations of VASP may yield slightly different total energies
which are not important for our tests – we only test that (i) inputs are written
correctly, (ii) outputs are parsed correctly, and (iii) jobs are connected together
properly.

This is achieved by “mocking” VASP execution. Instead of running VASP, we copy reference
output files into the current directory and then proceed with running the workflow.

The atomate2 dev command

Atomate2 provides the atm dev vasp-test-data command that automatically prepares
VASP data for use in atomate2 tests. It does this by:

	Copying VASP inputs and outputs into the correct directory structure.

	Converting POTCAR files to POTCAR.spec files.

	Removing large and unnecessary VASP files.

	Providing a template unit test that is configured for the specific workflow.

There are four stages to generating the test data:

1. Run the VASP workflow to generate reference outputs

Ensure that you are on a machine that can run VASP. Create a python file that contains
the code to run your workflow. We recommend adjusting the VASP settings so that the
files generated are not too large and can be run quickly. E.g., by reducing the k-point
mesh density or energy cutoff.

The script should also contain some additional code that will allow
atm dev vasp-test-data to process the reference data. Below we give an example
used to generate the elastic constant workflow test data.

```python
from atomate2.vasp.flows.elastic import ElasticMaker
from atomate2.vasp.powerups import update_user_kpoints_settings
from pymatgen.core import Structure
from jobflow import run_locally, JobStore
from maggma.stores.mongolike import MemoryStore
from monty.serialization import dumpfn

# silicon structure
si_structure = Structure(



	lattice=[
	[3.348898, 0.0, 1.933487],
[1.116299, 3.157372, 1.933487],
[0.0, 0.0, 3.866975],





],
species=[“Si”, “Si”],
coords=[[0.25, 0.25, 0.25], [0, 0, 0]],




)

# generate the flow and reduce the k-point mesh for the relaxation jobs
flow = ElasticMaker().make(si_structure)
flow = update_user_kpoints_settings(flow, {“grid_density”: 100}, name_filter=”relax”)

# run the workflow using a custom store so that we can easily compile test data
store = JobStore(MemoryStore(), additional_stores={“data”: MemoryStore()})
run_locally(flow, store=store, create_folders=True)

# dump all of the job outputs to the outputs.json file in the current directory
outputs = list(store.query(load=True))
dumpfn(outputs, “outputs.json”)
```

You should edit the part where the flow is generated but leave the rest of the code
the same. You should now run the script in a folder and generate the outputs.json file.

2. Compile the test data

The next stage is to compile the calculation data into the correct format. For each
VASP job in the workflow, there should be a folder with the name of the job that
contains:

	A folder called “inputs” with the INCAR, POTCAR.spec, POSCAR, and KPOINTS files. Note
that the KPOINTS file is optional and won’t be present if KSPACING is set in the INCAR.

	A folder called “outputs” with the vasprun.xml, OUTCAR, json log files and any other
output files needed for the workflow to run (e.g., CHGCAR file for band structure
workflows).

To generate this folder run the following command in the folder containing the
outputs.json file.

`bash
atm dev vasp-test-data WF_NAME
`

You should change WF_NAME to be a name for the workflow. Note, WF_NAME should not
contain spaces or punctuation. For example, the elastic constant workflow test data was
genenerated using atm dev vasp-test-data Si_elastic.

This will generate a folder in the current directory called “WF_NAME” that contains
the folders in the correct format.

````{note}
By default, the script will only copy POTCAR, POSCAR, CONTCAR, KPOINTS, INCAR,
vasprun.xml, OUTCAR and json files to the WF_NAME folder. If additional files are
needed for specific steps of the workflow you need to copy them in manually. A
mapping from jobflow calculation folder to job folder in WF_NAME is given at the
to of the atm dev vasp-test-data script output. E.g., it will look something
like

```
A mapping from the original job folders to the formatted folders is:

/Users/alex/atomate2/job_2021-11-08-17-24-31-799852-28250 -> Si_elastic/tight_relax_1
/Users/alex/atomate2/job_2021-11-08-17-25-14-718901-28808 -> Si_elastic/tight_relax_2
/Users/alex/atomate2/job_2021-11-08-17-25-38-237201-15341 -> Si_elastic/elastic_relax_6_6
/Users/alex/atomate2/job_2021-11-08-17-26-12-877896-35631 -> Si_elastic/elastic_relax_5_6
/Users/alex/atomate2/job_2021-11-08-17-26-47-215837-12883 -> Si_elastic/elastic_relax_4_6
/Users/alex/atomate2/job_2021-11-08-17-27-11-602937-71135 -> Si_elastic/elastic_relax_3_6
/Users/alex/atomate2/job_2021-11-08-17-27-45-722573-61724 -> Si_elastic/elastic_relax_2_6
/Users/alex/atomate2/job_2021-11-08-17-28-10-286137-10861 -> Si_elastic/elastic_relax_1_6


```

`{warning}
For the script to run successfully, every job in your workflow must have a unique
name. For example, there cannot be two calculations called "relax". Instead you
should ensure they are named something like "relax 1" and "relax 2".
`

## 3. Copy the test data folder into atomate2

You can now copy the WF_NAME folder into the atomate2 test files. VASP test files live
in atomate2/tests/test_data/vasp. Ensure that a workflow with that name doesn’t
already exist in the folder.

## 4. Write the test

The atm dev vasp-test-data also generates an example test that is configured to
use the test data we just generated.

The most important part is the section that mocks VASP and configures which checks
to perform on the input files. For the elastic constant workflow, it looks something like
this:

```python
mapping from job name to directory containing test files
ref_paths = {

“elastic relax 1/6”: “Si_elastic/elastic_relax_1_6”,
“elastic relax 2/6”: “Si_elastic/elastic_relax_2_6”,
“elastic relax 3/6”: “Si_elastic/elastic_relax_3_6”,
“elastic relax 4/6”: “Si_elastic/elastic_relax_4_6”,
“elastic relax 5/6”: “Si_elastic/elastic_relax_5_6”,
“elastic relax 6/6”: “Si_elastic/elastic_relax_6_6”,
“tight relax 1”: “Si_elastic/tight_relax_1”,
“tight relax 2”: “Si_elastic/tight_relax_2”,

}

settings passed to fake_run_vasp; adjust these to check for certain INCAR settings
fake_run_vasp_kwargs = {

“elastic relax 1/6”: {“incar_settings”: [“NSW”, “ISMEAR”]},
“elastic relax 2/6”: {“incar_settings”: [“NSW”, “ISMEAR”]},
“elastic relax 3/6”: {“incar_settings”: [“NSW”, “ISMEAR”]},
“elastic relax 4/6”: {“incar_settings”: [“NSW”, “ISMEAR”]},
“elastic relax 5/6”: {“incar_settings”: [“NSW”, “ISMEAR”]},
“elastic relax 6/6”: {“incar_settings”: [“NSW”, “ISMEAR”]},
“tight relax 1”: {“incar_settings”: [“NSW”, “ISMEAR”]},
“tight relax 2”: {“incar_settings”: [“NSW”, “ISMEAR”]},

}

automatically use fake VASP and write POTCAR.spec during the test
mock_vasp(ref_paths, fake_run_vasp_kwargs)
```

The ref_paths variable contains the mapping from job name to test folder.
The fake_run_vasp_kwargs contains the settings that will get passed to the
fake_run_vasp function in the atomate2/tests/vasp/conftest.py file. This
variable controls which INCAR settings are checked in the reference INCAR and the INCAR
generated by atomate2 during the test. You should update these settings to include
the important parameters for the jobs in your workflow. I.e., if it is a relaxation
then the value of NSW is important.

Finally, the call too mock_vasp configures the test such that:


	POTCAR files will be written as POTCAR.spec files.


	The fake_run_vasp function will be called instead of the {obj}`.run_vasp`
function. fake_run_vasp is responsible for checking the correct inputs are
written (by comparing against the files in the “inputs” folder) and copying in the
reference files from the “outputs” folder for each job.




After mock_vasp is called, you should edit the generate and run the workflow.
Ensure that the workflow is generated in exactly the same was as in step 1. E.g.,
if you altered the k-point density when generating the test data, you must also alter
the k-point density during the test.

Finally, you should add assert statements to validate the workflow outputs. As an
example, the full elastic workflow test is reproduced below.

```python
def test_elastic(mock_vasp, clean_dir):

import numpy as np
from jobflow import run_locally

from atomate2.common.schemas.elastic import ElasticDocument
from atomate2.vasp.flows.elastic import ElasticMaker
from atomate2.vasp.powerups import update_user_kpoints_settings

mapping from job name to directory containing test files
ref_paths = {

“elastic relax 1/6”: “Si_elastic/elastic_relax_1_6”,
“elastic relax 2/6”: “Si_elastic/elastic_relax_2_6”,
“elastic relax 3/6”: “Si_elastic/elastic_relax_3_6”,
“elastic relax 4/6”: “Si_elastic/elastic_relax_4_6”,
“elastic relax 5/6”: “Si_elastic/elastic_relax_5_6”,
“elastic relax 6/6”: “Si_elastic/elastic_relax_6_6”,
“tight relax 1”: “Si_elastic/tight_relax_1”,
“tight relax 2”: “Si_elastic/tight_relax_2”,

}

settings passed to fake_run_vasp; adjust these to check for certain INCAR settings
fake_run_vasp_kwargs = {

“elastic relax 1/6”: {“incar_settings”: [“NSW”, “ISMEAR”]},
“elastic relax 2/6”: {“incar_settings”: [“NSW”, “ISMEAR”]},
“elastic relax 3/6”: {“incar_settings”: [“NSW”, “ISMEAR”]},
“elastic relax 4/6”: {“incar_settings”: [“NSW”, “ISMEAR”]},
“elastic relax 5/6”: {“incar_settings”: [“NSW”, “ISMEAR”]},
“elastic relax 6/6”: {“incar_settings”: [“NSW”, “ISMEAR”]},
“tight relax 1”: {“incar_settings”: [“NSW”, “ISMEAR”]},
“tight relax 2”: {“incar_settings”: [“NSW”, “ISMEAR”]},

}

automatically use fake VASP and write POTCAR.spec during the test
mock_vasp(ref_paths, fake_run_vasp_kwargs)

generate flow
si_structure = Structure(

lattice=[[0, 2.73, 2.73], [2.73, 0, 2.73], [2.73, 2.73, 0]],
species=[“Si”, “Si”],
coords=[[0, 0, 0], [0.25, 0.25, 0.25]],

)

generate the flow and reduce the k-point mesh for the relaxation jobs
flow = ElasticMaker().make(si_structure)
flow = update_user_kpoints_settings(

flow, {“grid_density”: 100}, name_filter=”relax”

)

run the flow and ensure that it finished running successfully
responses = run_locally(flow, create_folders=True, ensure_success=True)

validate workflow outputs
elastic_output = responses[flow.jobs[-1].uuid][1].output
assert isinstance(elastic_output, ElasticDocument)
assert np.allclose(

elastic_output.elastic_tensor.ieee_format,
[

[155.7923, 54.8871, 54.8871, 0.0, 0.0, 0.0],
[54.8871, 155.7923, 54.8871, 0.0, 0.0, 0.0],
[54.8871, 54.8871, 155.7923, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 31.5356, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 31.5356, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 31.5356],

],
atol=1e-3,

)


```

Note that the mock_vasp and clean_dir arguments to the test function are
[pytest fixtures](https://docs.pytest.org/en/6.2.x/fixture.html) and are essential
for the test to run successfully.

`{warning}
For `mock_vasp` to work correctly, all imports needed for the test must be
imported in the test function itself (rather than at the top of the file).
`




            

          

      

      

    

  

    
      
          
            
  
API reference

This section gives an overview of the API for atomate2.




            

          

      

      

    

  

    
      
          
            
  (atomate2_fireworks)=


Using atomate2 with FireWorks

This tutorial will document how to configure atomate2 with [FireWorks][fireworks].
FireWorks allows you to easily submit and manage thousands of jobs at once.

For now, follow the [FireWorks instructions][fireworks_instructions]
in the atomate1 documentation but ignore the parts pertaining to atomate1.

Once you have constructed your workflow using atomate2, you can convert it to a
FireWorks workflow using the {obj}`~jobflow.managers.fireworks.flow_to_workflow` function.
The workflow can then be submitted to the launchpad in the usual way. For example, to
submit an MgO band structure workflow using FireWorks:

```python
from fireworks import LaunchPad
from atomate2.vasp.flows.core import RelaxBandStructureMaker
from jobflow.managers.fireworks import flow_to_workflow
from pymatgen.core import Structure

construct a rock salt MgO structure
mgo_structure = Structure(

lattice=[[0, 2.13, 2.13], [2.13, 0, 2.13], [2.13, 2.13, 0]],
species=[“Mg”, “O”],
coords=[[0, 0, 0], [0.5, 0.5, 0.5]],

)

make a band structure flow to optimise the structure and obtain the band structure
bandstructure_flow = RelaxBandStructureMaker().make(mgo_structure)

convert the flow to a fireworks WorkFlow object
wf = flow_to_workflow(bandstructure_flow)

submit the workflow to the FireWorks launchpad
lpad = LaunchPad.auto_load()
lpad.add_wf(wf)
```

[fireworks]: <https://materialsproject.github.io/fireworks/>
[fireworks_instructions]: <https://atomate.org/installation.html#configure-database-connections-and-computing-center-parameters>




            

          

      

      

    

  

    
      
          
            
  (user)=

# Introduction

`{include} ../../README.md
---
start-line: 9
---
`



            

          

      

      

    

  

    
      
          
            
  (installation)=

# Installation

## Introduction

This guide will get you up and running in an environment for running high-throughput
workflows with atomate2. atomate2 is built on the pymatgen, custodian, jobflow, and
FireWorks libraries. Briefly:


	[pymatgen] is used create input files and analyze the output of materials science codes.


	[custodian] runs your simulation code (e.g., VASP) and performs error checking/handling
and checkpointing.


	[jobflow] is used to design computational workflows.


	[FireWorks] (optional) is used to manage and execute workflows on HPC machines.




Running and writing your own workflows are covered in later tutorials. For now, these
topics will be covered in enough depth to get you set up and to help you know where to
troubleshoot if you’re having problems.

Note that this installation tutorial is VASP-centric since almost all functionality
currently in atomate2 pertains to VASP.

[pymatgen]: http://pymatgen.org
[custodian]: https://materialsproject.github.io/custodian/
[fireworks]: https://materialsproject.github.io/fireworks/
[jobflow]: https://materialsproject.github.io/jobflow/

### Objectives


	Install and configure atomate2 on your computing cluster.


	Validate the installation with a test workflow.




### Installation checklist

Completing everything on this checklist should result in a fully functioning
environment.

1. [Prerequisites](#prerequisites)
1. [Create a directory scaffold](#create-a-directory-scaffold-for-atomate2)
1. [Create a conda environment](#create-a-conda-environment)
1. [Install Python packages](#install-python-packages)
1. [Configure output database](#configure-calculation-output-database)
1. [Configure pymatgen](#configure-pymatgen)
1. [Run a test workflow](#run-a-test-workflow)

## Prerequisites

Before you install, you need to make sure that your “worker” computer (where the
simulations will be run, often a computing cluster) that will execute workflows can
(i) run the base simulation packages (e.g., VASP, LAMMPS, FEFF, etc) and (ii) connect
to a MongoDB database. For (i), make sure you have the appropriate licenses and
compilation to run the simulation packages that are needed. For (ii), make sure your
computing center doesn’t have firewalls that prevent database access. Typically,
academic computing clusters as well as systems with a MOM-node style architecture
(e.g., NERSC) are OK.

### VASP

To get access to VASP on supercomputing resources typically requires that you’re added
to a user group on the system you work on after your license is verified. Ensure that
you have access to the VASP executable and that it is functional before starting this
tutorial.

### MongoDB

[MongoDB](https://docs.mongodb.com/manual/) is a NoSQL database that stores each database
entry as a document, which is represented in the JSON format (the formatting is similar to
a dictionary in Python). Atomate2 uses MongoDB to:


	Create a database of calculation results.


	Store the workflows that you want to run as well as their state details (through
FireWorks - optional).




MongoDB must be running and available to accept connections whenever you’re running
workflows. Thus, it is strongly recommended that you have a server to run MongoDB or
(simpler) use a hosting service. Your options are:


	Use a commercial service to host your MongoDB instance. These are typically the
easiest to use and offer high quality service but require payment for larger
databases. [MongoDB Atlas](https://www.mongodb.com/cloud/atlas) offers a free 500 MB
server which is certainly enough to get started for small to medium size projects, and
it is easy to upgrade or migrate your database if you exceed the free allocation.


	Contact your supercomputing center to see if they offer MongoDB hosting (e.g., NERSC
has this, Google “request NERSC MongoDB database”).


	Self-host a MongoDB server.




If you’re just starting, we suggest the first (with a free plan) or second option
(if available to you). The third option will require you to open up network settings to
accept outside connections properly which can sometimes be tricky.

Next, create a new database and set up an account with admin access. Keep a record of
your credentials - we will configure jobflow to connect to them in a later step. Also
make sure you note down the hostname and port for the MongoDB instance.

```{note}
The computers that perform the calculations must have access to your MongoDB server.
Some computing resources have firewalls blocking connections. Although this is not a
problem for most computing centers that allow such connections (particularly from
MOM-style nodes, e.g. at NERSC, SDSC, etc.), but some of the more security-sensitive
centers (e.g., LLNL, PNNL, ARCHER) will run into issues. If you run into connection
issues later in this tutorial, some options are:

	Contact your computing center to review their security policy to allow connections
from your MongoDB server (best resolution).

	Host your Mongo database on a machine that you’re able to securely connect to,
e.g. on the supercomputing network itself (ask a system administrator for help).

	Use a proxy service to forward connections from the MongoDB –> login node –>
compute node (you might try, for example, [the mongo-proxy tool](https://github.com/bakks/mongo-proxy).

	Set up an ssh tunnel to forward connections from allowed machines (the tunnel must
be kept alive at all times you’re running workflows).


```

## Create a directory scaffold for atomate2

Installing atomate2 includes installation of codes, configuration files, and various
binaries and libraries. Thus, it is useful to create a directory structure that
organizes all these items.


	Log in to the compute cluster and create a directory in a spot on disk that has
relatively fast access from compute nodes _and_ that is only accessible by yourself
or your collaborators. Your environment and configuration files will go here,
including database credentials. We will call this place <<INSTALL_DIR>>. A good
name might simply be atomate2.


	Now you should scaffold the rest of your <<INSTALL_DIR>> for the things we are
going to do next. Run mkdir -p atomate2/{config,logs} to create directories named
logs and config so your directory structure looks like:




`text
atomate2
├── config
└── logs
`

## Create a conda environment

`{note}
Make sure to create a Python 3.8+ environment as recent versions of atomate2 only
support Python 3.8 and higher.
`

We highly recommended that you organize your installation of the atomate2 and the other
Python codes using a conda virtual environment. Some of the main benefits are:


	Different Python projects that have conflicting packages can coexist on the same
machine.


	Different versions of Python can exist on the same machine and be managed more easily
(e.g. Python 2 and Python 3).


	You have full rights and control over the environment. On computing resources,
this solves permissions issues with installing and modifying packages.




The easiest way to get a Python virtual environment is to use the conda tool.
Most clusters (e.g., NESRC) have [Anaconda](https://www.continuum.io) installed already
which provides access to the conda binary. If the conda tool is not available, you can
install it by following the installation instructions for
[Miniconda](https://docs.conda.io/en/latest/miniconda.html). To set up your conda environment:


	Create a new conda environment called atomate2 with Python 3.9 using
conda create -n atomate2 python=3.9.


	Activate your environment by running conda activate atomate2. Now, when you use
the command python, you’ll be using the version of python in the atomate2
conda environment folder.


	Consider adding conda activate atomate2 to your .bashrc or .bash_profile file so
that it is run whenever you log in. Otherwise, note that you must call this command
after every log in before you can do work on your atomate project.




## Install Python packages

Next, we will download and install all of the atomate2-related Python packages.

To install the packages run:

`bash
pip install atomate2
`

## Configure calculation output database

The next step is to configure your mongoDB database that will be used to store
calculation outputs.

`{note}
All of the paths here must be *absolute paths*. For example, the absolute path that
refers to `<<INSTALL_DIR>>` might be `/global/homes/u/username/atomate` (don't
use the relative directory `~/atomate`).
`

`{warning}
**Passwords will be stored in plain text!** These files should be stored in a place
that is not accessible by unauthorized users. Also, you should make random passwords
that are unique only to these databases.
`

Create the following files in <<INSTALL_DIR>>/config.

### jobflow.yaml

The jobflow.yaml file contains the credentials of the MongoDB server that will store
calculation outputs. The jobflow.yaml file requires you to enter the basic database
information as well as what to call the main collection that results are kept in (e.g.
ouputs). Note that you should replace the whole <<PROPERTY>> definition with
your own settings.

```yaml
JOB_STORE:

	docs_store:
	type: MongoStore
database: <<DB_NAME>>
host: <<HOSTNAME>>
port: <<PORT>>
username: <<USERNAME>>
password: <<PASSWORD>>
collection_name: outputs

	additional_stores:
	
	data:
	type: GridFSStore
database: <<DB_NAME>>
host: <<HOSTNAME>>
port: <<PORT>>
username: <<USERNAME>>
password: <<PASSWORD>>
collection_name: outputs_blobs


```

````{note}
If you’re using a mongoDB hosted on Atlas (using the free plan linked above) the
connection format is slightly different. Instead your jobflow.yaml file should
contain the following.

```yaml
JOB_STORE:



	docs_store:
	type: MongoURIStore
uri: mongodb+srv://<<USERNAME>>:<<PASSWORD>>@<<HOST>>/<<DB_NAME>>?retryWrites=true&w=majority
collection_name: outputs



	additional_stores:
	
	data:
	type: GridFSURIStore
uri: mongodb+srv://<<USERNAME>>:<<PASSWORD>>@<<HOST>>/<<DB_NAME>>?retryWrites=true&w=majority
collection_name: outputs_blobs












```

The URI key may be different based on the Atlas database you deployed. You can
see the template for the URI string by clicking on “Databases” (under “Deployment”
in the left hand menu) then “Connect” then “Connect your application”. Select
Python as the driver and 3.12 as the version. The connection string should now be
displayed in the box.

Note that the username and password are not your login account details for Atlas.
Instead you must add a new database user by selecting “Database Access” (under
“Security” in the left hand menu) and then “Add a new database user”.

Secondly, Atlas only allows connections from known IP addresses. You must therefore
add the IP address of your cluster (and any other computers you’ll be connecting
from) by clicking “Network Access” (under “Security” in the left hand menu) and then
“Add IP address”.
````

Atomate2 uses two database collections, one for small documents (such as elastic
tensors, structures, and energies) called the docs store and another for large
documents such as band structures and density of states called the data store.

Due to inherent limitations in MongoDB (individual documents cannot be larger than 16
Mb), we use GridFS to store large data. GridFS sits on top of MongoDB and
therefore doesn’t require any further configuration on your part. However, other
storage types are available (such as Amazon S3). For more information please read
[](advanced_storage).

### atomate2.yaml

The atomate2.yaml file controls all atomate2 settings. You can see the full list
of available settings in the {obj}`.Atomate2Settings` docs. For now, we will just
configure the commands used to run VASP.

Write the atomate2.yaml file with the following content,

`yaml
VASP_CMD: <<VASP_CMD>>
`

The is the command that you would use to run VASP with parallelization
(srun -n 16 vasp, ibrun -n 16 vasp, mpirun -n 16 vasp, …).

### Finishing up

The directory structure of <<INSTALL_DIR>>/config should now look like

`
config
├── jobflow.yaml
└── atomate2.yaml
`

The last thing we need to do to configure atomate2 is add the following lines to your
.bashrc / .bash_profile file to set an environment variable telling atomate2 and jobflow
where to find the config files.

`bash
export ATOMATE2_CONFIG_FILE="<<INSTALL_DIR>>/config/atomate2.yaml"
export JOBFLOW_CONFIG_FILE="<<INSTALL_DIR>>/config/jobflow.yaml"
`

where <<INSTALL_DIR>> is your installation directory.

## Configure pymatgen

If you’re planning to run VASP, the last configuration step is to configure pymatgen to
(required) find the pseudopotentials for VASP and (optional) set up your API key from
the [Materials Project].

### Pseudopotentials

The psuedopotentials should be available on the compute machine. Follow the
[pseudopotential installation instructions in the pymatgen documentation](https://pymatgen.org/installation.html#potcar-setup)
and then return to this tutorial.

### Materials Project API key

You can get an API key from the [Materials Project] by logging in and going to your
[Dashboard](https://materialsproject.org/dashboard). Add this also to
your ~/.pmgrc.yaml so that it looks like the following

`yaml
PMG_VASP_PSP_DIR: <<INSTALL_DIR>>/pps
PMG_MAPI_KEY: <<YOUR_API_KEY>>
`

[materials project]: https://materialsproject.org/dashboard

## Run a test workflow

To make sure that everything is set up correctly and in place, we’ll finally run a
simple (but real) test workflow. We will first define a python script to run the
workflow. Next, we’ll submit a job to run the script. Finally, we’ll examine the
database to check the job output. In this tutorial, we will be submitting an individual
workflow manually. If you want to manage and execute many workflows simultaneously
this can be achieved using the FireWorks package and is covered in
[](atomate2_FireWorks).

This particular workflow will only run a single calculation that optimizes a crystal
structure (not very exciting). In the subsequent tutorials, we’ll run more complex
workflows.

### Define the workflow

Workflows are written using the jobflow software. Essentially, individual stages of
a workflow are simple python functions. Jobflow provides a way to connect jobs together
in a natural way. For more details on connecting jobs together see:
[](connecting_vasp_jobs).

Go to the directory where you would like your calculations to run (i.e., your scratch
or work directory) and create a file called relax.py containing:

```python
from atomate2.vasp.jobs.core import RelaxMaker
from jobflow import run_locally
from pymatgen.core import Structure

construct an FCC silicon structure
si_structure = Structure(

lattice=[[0, 2.73, 2.73], [2.73, 0, 2.73], [2.73, 2.73, 0]],
species=[“Si”, “Si”],
coords=[[0, 0, 0], [0.25, 0.25, 0.25]],

)

make a relax job to optimise the structure
relax_job = RelaxMaker().make(si_structure)

run the job
run_locally(relax_job, create_folders=True)
```

The run_locally function is a jobflow command that will execute the workflow on
the current computing resource.

### Submit the workflow

Next, make a job submission script called job.sh containing:

`bash
conda activate atomate2
python relax.py
`

The job submission script should include all the headers specific to your HPC resource.
For example, if your machine uses the Grid Engine scheduler for submitting and running
jobs, your script would look something like:

```bash
#!/bin/bash -l
#$ -N relax_si
#$ -P my_project
#$ -l h_rt=1:00:00
#$ -l mem=4G
#$ -pe mpi 16
#$ -cwd

ensure you load the modules to run VASP, e.g., module load vasp

conda activate atomate2
python relax.py
```

Finally, submit the job to the queue using the normal scheduler command. For example
on the Grid Engine scheduler, this would be using qsub job.sh.

### Analyzing the results

Once the job is finished, you can connect to the output database and check the job
output.

```python
from jobflow import SETTINGS

store = SETTINGS.JOB_STORE

connect to the job store
store.connect()

query the job store
result = store.query_one(

{“output.formula_pretty”: “Si”}, properties=[“output.output.energy_per_atom”]

)
print(result)
```

We query the database using the mongoDB query language. You can also connect to the
database using graphical tools, such as [Robo3T](https://robomongo.org) to explore your
results.

The outputs of VASP calculations always have the same set of keys. This structure is
called a schema. You can see the VASP calculation scheme in the {obj}`~atomate2.vasp.schemas.task.TaskDocument`
section of the documentation.

### Next steps

That’s it! You’ve completed the installation tutorial!

See the following pages for more information on the topics we covered here:


	To see how to run and customize the existing Workflows in atomate2, try the
[](running_workflows) tutorial (suggested next step).


	To see how to manage and execute many workflows at once, try the
[](atomate2_FireWorks) tutorial.




## Troubleshooting and FAQ

### My job failed!

Check the job error files in the launch directory for any errors. Also check the job
standard output for a full log of the workflow execution and to check for a Python
traceback.

### I honestly tried everything I can to solve my problem. I still need help!

There is a [support forum for atomate2](https://discuss.matsci.org/c/atomate).



            

          

      

      

    

  

    
      
          
            
  (running_workflows)=
# Running Workflows

## Introduction

Once you have a working installation of atomate2, you’ll want to jump in and start
running workflows. Atomate2 includes many workflows with reasonable settings that can
get you started. This tutorial will quickly guide you through customizing and running a
workflow to calculate the bandstructure of MgO.

### Objectives


	Run an atomate2 workflow using Python


	Analyze the results using pymatgen




### Prerequisites

In order for you to complete this tutorial you need


	A working installation of atomate2.




## Bandstructure Workflows

A fundamental and common use of DFT is to calculate band structures and electronic
densities of states. Here we will use an atomate2 workflow to calculate the
bandstructure of MgO. The workflow consists of 4 parts:


	A structural optimisation.


	A self-consistent static calculation on the relaxed geometry.


	A non-self-consistent calculation on a uniform k-point mesh (for the density of
states).


	A non-self-consistent calculation on a high symmetry k-point path (for the line mode
band structure).




## Running a Bandstructure Workflow

### Setup

Make sure you have completed the installation tutorial. Next, create a folder on your
HPC resource for this tutorial. It can be located anywhere that you can submit and run
jobs. You’ll keep all of the files for this tutorial there.

### Create the workflow in Python

Workflows in atomate2 are composed of two objects:


	Jobs: A single unit of computation. Roughly speaking, each job corresponds to one
VASP calculation.


	Flows: A collection of jobs connected together. The band structure workflow we are
running is an example of a flow. Flows can be nested, for example, you could
have multiple band structure flows in a single workflow.




A list of all VASP workflows (which covers both jobs and flows) is given in the
[](vasp_workflows) section of the documentation. Workflows are created
using Maker objects. These return the workflows that can be executed later.

In this example, we will use the {obj}`RelaxBandStructureMaker` to construct our
workflow.

Create a Python script named mgo_bandstructure.py with the following contents:

```python
from atomate2.vasp.flows.core import RelaxBandStructureMaker
from jobflow import run_locally
from pymatgen.core import Structure

construct a rock salt MgO structure
mgo_structure = Structure(

lattice=[[0, 2.13, 2.13], [2.13, 0, 2.13], [2.13, 2.13, 0]],
species=[“Mg”, “O”],
coords=[[0, 0, 0], [0.5, 0.5, 0.5]],

)

make a band structure flow to optimise the structure and obtain the band structure
bandstructure_flow = RelaxBandStructureMaker().make(mgo_structure)

run the job
run_locally(bandstructure_flow, create_folders=True)
```

(running_the_workflow)=
### Running the workflow

Similar, to the installation tutorial, now create a job script to execute the workflow.
Write your job script to the job.sh file. For example, on the Grid Engine queue
system, your job script would look something like:

```bash
#!/bin/bash -l
#$ -N relax_si
#$ -P my_project
#$ -l h_rt=1:00:00
#$ -l mem=4G
#$ -pe mpi 16
#$ -cwd

ensure you load the modules to run VASP, e.g., module load vasp

conda activate atomate2
python mgo_bandstructure.py
```

Finally, submit the job to the queue using the normal scheduler command. For example
on the Grid Engine scheduler, this would be using qsub job.sh.

Once the job is finished, you can check that the workflow completed successfully by
checking the standard output and error files produced by the job script.

Provided there weren’t any errors, the workflow has successfully finished and the
results will be in your database.

## Analyzing a Bandstructure Workflow

Finally, we’ll plot the results that we calculated. Simply run the following Python
code, either as a script or on the Python prompt.

```python
from jobflow import SETTINGS
from pymatgen.electronic_structure.plotter import DosPlotter, BSPlotter
from pymatgen.electronic_structure.dos import CompleteDos
from pymatgen.electronic_structure.bandstructure import BandStructureSymmLine

store = SETTINGS.JOB_STORE
store.connect()

get the uniform bandstructure from the database
result = store.query_one(

{“output.task_label”: “non-scf uniform”},
properties=[“output.vasp_objects.dos”],
load=True, # DOS stored in the data store, so we need to explicitly load it

)
dos = CompleteDos.from_dict(result[“output”][“vasp_objects”][“dos”])

plot the DOS
dos_plotter = DosPlotter()
dos_plotter.add_dos_dict(dos.get_element_dos())
dos_plotter.save_plot(“MgO-dos.pdf”, xlim=(-10, 10), img_format=”pdf”)

get the line mode bandstructure from the database
result = store.query_one(

{“output.task_label”: “non-scf line”},
properties=[“output.vasp_objects.bandstructure”],
load=True, # BS stored in the data store, so we need to explicitly load it

)
bandstructure = BandStructureSymmLine.from_dict(

result[“output”][“vasp_objects”][“bandstructure”]

)

plot the line mode band structure
bs_plotter = BSPlotter(bandstructure)
bs_plotter.save_plot(“MgO-bandstructure.pdf”, img_format=”pdf”)
```

If you open the saved figures, you should see a plot of your DOS and bandstructure!

![MgO density of states](../_static/MgO-dos.png)

![MgO band structure](../_static/MgO-bandstructure.png)

## Conclusion

In this tutorial you learned how to run a band structure workflow and plot the outputs.

To see what workflows can be run, see the [](vasp_workflows). They
can be set up and  run in the same way as in this tutorial.

At this point, you might:


	Learn how to chain workflows together: [](connecting_vasp_jobs).


	Learn how to customise VASP input settings: [](modifying_input_sets).


	Configure atomate2 with FireWorks to manage and execute many workflows at once:
[](atomate2_FireWorks).






            

          

      

      

    

  

    
      
          
            
  (codes)=

# Codes

The section gives the instructions for codes supported by atomate2.



            

          

      

      

    

  

    
      
          
            
  (codes.vasp)=
# VASP

At present, most workflows in atomate2 use the Vienna ab initio simulation package
(VASP) as the density functional theory code.

By default, the input sets used in atomate2 differ from the input sets used in atomate1
and are inconsistent with calculations performed in the Materials Project. The primary
differences are:


	Use of the PBEsol exchange–correlation functional instead of PBE.


	Use of up-to-date pseudopotentials (PBE_54 instead of PBE_52).


	Use of KSPACING for most calculations.




`{warning}
The different input sets used in atomate2 mean total energies cannot be compared
against energies taken from the Materials Project unless the default settings are
modified accordingly.
`

## Configuration

These workflows require VASP to be installed and on the path. Furthermore, the pymatgen
package is used to write VASP input files such as POTCARs. Accordingly, pymatgen
must be aware of where the pseudopotentials are installed. Please see the [pymatgen
POTCAR setup guide](https://pymatgen.org/installation.html#potcar-setup) for more
details.

All settings for controlling VASP execution can be set using the ~/.atomate2.yaml
configuration file or using environment variables. For more details on configuring
atomate2, see the [Installation page](installation).

The most important settings to consider are:


	VASP_CMD: The command used to run the standard version of VASP. I.e., something like
mpi_run -n 16 vasp_std > vasp.out.


	VASP_GAMMA_CMD: The command used to run the gamma-only version of VASP.


	VASP_NCL_CMD: The command used to run the non-collinear version of VASP.


	VASP_INCAR_UPDATES: Updates to apply to VASP INCAR files. This allows you to
customise input sets on different machines, without having to change the submitted
workflows. For example, you can set certain parallelization parameters, such as
NCORE, KPAR etc.


	VASP_VDW_KERNEL_DIR: The path to the VASP Van der Waals kernel.




(vasp_workflows)=
## List of VASP workflows

```{eval-rst}
.. csv-table:

:file: vasp-workflows.csv
:widths: 40, 20, 40
:header-rows: 1


```

### Static

A static VASP calculation (i.e., no relaxation).

### Relax

A VASP relaxation calculation. Full structural relaxation is performed.

### Tight Relax

A VASP relaxation calculation using tight convergence parameters. Full structural
relaxation is performed. This workflow is useful when small forces are required, such
as before calculating phonon properties.

### Dielectric

A VASP calculation to obtain dielectric properties. The static and high-frequency
dielectric constants are obtained using density functional perturbation theory.

### Transmuter

A generic calculation that transforms the structure (using one of the
{obj}`pymatgen.transformations`) before writing the input sets. This can be used to
perform many structure operations such as making a supercell or symmetrising the
structure.

### HSE06 Static

A static VASP calculation (i.e., no relaxation) using the HSE06 exchange correlation
functional.

### HSE06 Relax

A VASP relaxation calculation using the HSE06 functional. Full structural relaxation
is performed.

### HSE06 Tight Relax

A VASP relaxation calculation using tight convergence parameters with the HSE06
functional. Full structural relaxation is performed.

### Double Relax

Perform two back-to-back relaxations. This can often help avoid errors arising from
Pulay stress.

### Band Structure

Calculate the electronic band structure. This flow consists of three calculations:


	A static calculation to generate the charge density.


	A non-self-consistent field calculation on a dense uniform mesh.


	A non-self-consistent field calculation on the high-symmetry k-point path to generate
the line mode band structure.




`{note}
Band structure objects are automatically stored in the `data` store due to
limitations on mongoDB collection sizes.
`

### Uniform Band Structure

Calculate a uniform electronic band structure. This flow consists of two calculations:


	A static calculation to generate the charge density.


	A non-self-consistent field calculation on a dense uniform mesh.





	```{note}
	Band structure objects are automatically stored in the data store due to
limitations on mongoDB collection sizes.


```

### Line-Mode Band Structure

Calculate a line-mode electronic band structure. This flow consists of two calculations:


	A static calculation to generate the charge density.


	A non-self-consistent field calculation on a high-symmetry k-point path to generate
the line mode band structure.




`{note}
Band structure objects are automatically stored in the `data` store due to
limitations on mongoDB collection sizes.
`

### HSE06 Band Structure

Calculate the electronic band structure using HSE06. This flow consists of three
calculations:


	A HSE06 static calculation to generate the charge density.


	A HSE06 calculation on a dense uniform mesh.


	A HSE06 calculation on the high-symmetry k-point path using zero weighted k-points.




`{note}
Band structure objects are automatically stored in the `data` store due to
limitations on mongoDB collection sizes.
`

### HSE06 Uniform Band Structure

Calculate a uniform electronic band structure using HSE06. This flow consists of two
calculations:


	A HSE06 static calculation to generate the charge density.


	A HSE06 non-self-consistent field calculation on a dense uniform mesh.




`{note}
Band structure objects are automatically stored in the `data` store due to
limitations on mongoDB collection sizes.
`

### HSE06 Line-Mode Band Structure

Calculate a line-mode electronic band structure using HSE06. This flow consists of two
calculations:


	A HSE06 static calculation to generate the charge density.


	A HSE06 non-self-consistent field calculation on a high-symmetry k-point path to
generate the line mode band structure.




`{note}
Band structure objects are automatically stored in the `data` store due to
limitations on mongoDB collection sizes.
`

### Relax and Band Structure

Perform a relaxation and then run the Band Structure workflow. By default, a
Double Relax relaxation is performed.

### Elastic Constant

Calculate the elastic constant of a material. Initially, a tight structural relaxation
is performed to obtain the structure in a state of approximately zero stress.
Subsequently, perturbations are applied to the lattice vectors and the resulting
stress tensor is calculated from DFT, while allowing for relaxation of the ionic degrees
of freedom. Finally, constitutive relations from linear elasticity, relating stress and
strain, are employed to fit the full 6x6 elastic tensor. From this, aggregate properties
such as Voigt and Reuss bounds on the bulk and shear moduli are derived.

See the Materials Project [documentation on elastic constants](
https://docs.materialsproject.org/methodology/elasticity/) for more details.

`{note}
It is strongly recommended to symmetrize the structure before running this workflow.
Otherwise, the symmetry reduction routines will not be as effective at reducing the
number of deformations needed.
`

### Optics

Calculate the frequency dependent dielectric response of a material.

This workflow contains an initial static calculation, and then a non-self-consistent
field calculation with LOPTICS set. The purpose of the static calculation is to
determine i) if the material needs magnetism set, and ii) the total number of bands (the
non-scf calculation contains 1.3 * number of bands in the static calculation) as often
the highest bands are not properly converged in VASP.

### HSE06 Optics

Calculate the frequency dependent dielectric response of a material using HSE06.

This workflow contains an initial static calculation, and then a uniform band structure
calculation with LOPTICS set. The purpose of the static calculation is to determine i)
if the material needs magnetism set, and ii) the total number of bands (the uniform
contains 1.3 * number of bands in the static calculation) as often the highest bands are
not properly converged in VASP.

### Phonons

Calculate the harmonic phonons of a material.

Initially, a tight structural relaxation is performed to obtain a structure without forces
on the atoms. Subsequently, supercells with one displaced atom are generated and accurate
forces are computed for these structures. With the help of phonopy, these forces are then
converted into a dynamical matrix. To correct for polarization effects, a correction of the
dynamical matrix based on BORN charges can be performed. Finally, phonon densities of states,
phonon band structures and thermodynamic properties are computed.

`{note}
It is heavily recommended to symmetrize the structure before passing it to
this flow. Otherwise, a different space group might be detected and too
many displacement calculations will be generated.
It is recommended to check the convergence parameters here and
adjust them if necessary. The default might not be strict enough
for your specific case.
`

## Lobster

Perform bonding analysis with [LOBSTER](http://cohp.de/) and [LobsterPy](https://github.com/jageo/lobsterpy)

Initially, a structural relaxation is performed. Within a static run, the wave function is pre-converged
with symmetry switched on. Then, another static run with the correct number of bands and without
symmetry will be performed. The wave function will then be used for LOBSTER runs with all
available basis functions in Lobster. Then, [LobsterPy](https://github.com/jageo/lobsterpy) will perform an automatic
analysis of the output files from LOBSTER.

Please add the LOBSTER command to the atomate2.yaml file:

`yaml
VASP_CMD: <<VASP_CMD>>
LOBSTER_CMD: <<LOBSTER_CMD>>
`

Outputs from the automatic analysis with LobsterPy can easily be extracted from the database and also plotted:

```python
from jobflow import SETTINGS
from pymatgen.electronic_structure.cohp import Cohp
from pymatgen.electronic_structure.plotter import CohpPlotter

store = SETTINGS.JOB_STORE
store.connect()

	result = store.query_one(
	{“name”: “lobster_run_0”},
properties=[

“output.lobsterpy_data.cohp_plot_data”,
“output.lobsterpy_data_cation_anion.cohp_plot_data”,

],
load=True,

)

	for number, (key, cohp) in enumerate(
	result[“output”][“lobsterpy_data”][“cohp_plot_data”].items()

):
	plotter = CohpPlotter()
cohp = Cohp.from_dict(cohp)
plotter.add_cohp(key, cohp)
plotter.save_plot(“plots_all_bonds” + str(number) + “.pdf”)

	for number, (key, cohp) in enumerate(
	result[“output”][“lobsterpy_data_cation_anion”][“cohp_plot_data”].items()

):
	plotter = CohpPlotter()
cohp = Cohp.from_dict(cohp)
plotter.add_cohp(key, cohp)
plotter.save_plot(“plots_cation_anion_bonds” + str(number) + “.pdf”)


```

(modifying_input_sets)=
Modifying input sets
——————–

The inputs for a calculation can be modified in several ways. Every VASP job
takes a {obj}`.VaspInputGenerator` as an argument (input_set_generator). One
option is to specify an alternative input set generator:

```python
from atomate2.vasp.sets.core import StaticSetGenerator
from atomate2.vasp.jobs.core import StaticMaker

create a custom input generator set with a larger ENCUT
my_custom_set = StaticSetGenerator(user_incar_settings={“ENCUT”: 800})

initialise the static maker to use the custom input set generator
static_maker = StaticMaker(input_set_generator=my_custom_set)

create a job using the customised maker
static_job = static_maker.make(structure)
```

The second approach is to edit the job after it has been made. All VASP jobs have a
maker attribute containing a copy of the Maker that made them. Updating
the input_set_generator attribute maker will update the input set that gets
written:

`python
static_job.maker.input_set_generator.user_incar_settings["LOPTICS"] = True
`

Finally, sometimes you have a workflow containing many VASP jobs. In this case it can be
tedious to update the input sets for each job individually. Atomate2 provides helper
functions called “powerups” that can apply settings updates to all VASP jobs in a flow.
These powerups also contain filters for the name of the job and the maker used to
generate them.

```python
from atomate2.vasp.powerups import update_user_incar_settings
from atomate2.vasp.flows.elastic import ElasticMaker
from atomate2.vasp.flows.core import DoubleRelaxMaker
from atomate2.vasp.jobs.elastic import ElasticRelaxMaker

make a flow to calculate the elastic constants
elastic_flow = ElasticMaker().make(structure)

update the ENCUT of all VASP jobs in the flow
new_flow = update_user_incar_settings(elastic_flow, {“ENCUT”: 200})

only update VASP jobs which have “deformation” in the job name.
new_flow = update_user_incar_settings(

elastic_flow, {“ENCUT”: 200}, name_filter=”deformation”

)

only update VASP jobs which were generated by an ElasticRelaxMaker
new_flow = update_user_incar_settings(

elastic_flow, {“ENCUT”: 200}, class_filter=ElasticRelaxMaker

)

powerups can also be applied directly to a Maker. This can be useful for makers
that produce flows, as it allows you to update all nested makers. E.g.
relax_maker = DoubleRelaxMaker()
new_maker = update_user_incar_settings(relax_maker, {“ENCUT”: 200})
flow = new_maker.make(structure) # this flow will reflect the updated ENCUT value
```

`{note}
Powerups return a copy of the original flow or Maker and do not modify it in place.
`

In addition to the ability to change INCAR parameters on-the-fly, the
{obj}`.VaspInputGenerator`, Maker object, and “powerups” allow for the manual
modification of several additional VASP settings, such as the k-points
(user_kpoints_settings) and choice of pseudopotentials (user_potcar_settings).

If a greater degree of flexibility is needed, the user can define a default set of input
arguments (config_dict) that can be provided to the {obj}`.VaspInputGenerator`.
By default, the {obj}`.VaspInputGenerator` uses a base set of VASP input parameters
from {obj}`.BaseVaspSet.yaml`, which each Maker is built upon. If desired, the user can
define a custom .yaml file that contains a different base set of VASP settings to use.
An example of how this can be done is shown below for a representative static
calculation.

```
from atomate2.vasp.sets.core import StaticSetGenerator
from atomate2.vasp.jobs.core import StaticMaker
from atomate2.vasp.jobs.base import VaspInputGenerator
from monty.serialization import loadfn

read in a custom config file
user_config_dict = loadfn(“/path/to/my/CustomVaspSet.yaml”)

create a custom static set generator with user-defined defaults. Also change the
NELMIN parameter to 6 (for demonstration purposes)
my_custom_set = StaticSetGenerator(

user_incar_settings={“NELMIN”: 6},
config_dict=user_config_dict,

)

initialise the static maker to use the custom input set generator
static_maker = StaticMaker(input_set_generator=my_custom_set)

create a job using the customised maker
static_job = static_maker.make(structure)
```

(connecting_vasp_jobs)=
Chaining workflows
——————

All VASP workflows are constructed using the Maker.make() function. The arguments
for this function always include:


	structure: A pymatgen structure.


	prev_vasp_dir: A previous VASP directory to copy output files from.




There are two options when chaining workflows:


	Use only the structure from the previous calculation. This can be achieved by only
setting the structure argument.


	Use the structure and additional outputs from a previous calculation. By default,
these outputs include INCAR settings, the band gap (used to automatically
set KSPACING), and the magnetic moments. Some workflows will also use other outputs.
For example, the Band Structure workflow will copy the CHGCAR file (charge
density) from the previous calculation. This can be achieved by setting both the
structure and prev_vasp_dir arguments.




These two examples are illustrated in the code below, where we chain a relaxation
calculation and a static calculation.

```python
from jobflow import Flow
from atomate2.vasp.jobs.core import RelaxMaker, StaticMaker
from pymatgen.core.structure import Structure

si_structure = Structure.from_file(“Si.cif”)

create a relax job
relax_job = RelaxMaker().make(structure=si_structure)

create a static job that will use only the structure from the relaxation
static_job = StaticMaker().make(structure=relax_job.output.structure)

create a static job that will use additional outputs from the relaxation
static_job = StaticMaker().make(

structure=relax_job.output.structure, prev_vasp_dir=relax_job.output.dir_name

)

create a flow including the two jobs and set the output to be that of the static
my_flow = Flow([relax_job, static_job], output=static_job.output)
```



            

          

      

      

    

  _static/minus.png





_static/plus.png





_static/file.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/MgO-dos.png
-0

2.00
—Mg

» 1.75
3
2 1.50
0
U125
o
>.1.00
e
? 0.75
2 0.50
0.25

__—

0096075 5.0 =25 0.0 25 50 7.5 10.0
Energies (eV)






_static/MgO-bandstructure.png
E — Ef(eV)

— Band 0 up

N

AN
\J /

r X W K r L uw
Wave Vector






